

the carbon and oxygen content of the films, however, and on this basis, the carbon content is estimated to be less than 0.5 at.-% and the oxygen 1.5-3 at.-%. The source of the oxygen contamination is probably oxygen diffusion from the quartz reactor, whereas the carbon must come from the amide ligands in the silicon-containing precursors. The binding energies of the Si 2p and N 1s peaks were 101.8 and 397.5 eV, respectively, which are in accord with literature values for stoichiometric Si_3N_4 .¹⁴ The absolute binding energies were referenced to the C 1s peak at 284.6 eV.

The refractive indexes (n_f) of the films were also determined (Table I). They varied from 1.84 to 1.89. Refractive indexes for silicon nitride films are normally 1.8-2.0, with values below 1.9 indicating the presence of small amounts of oxygen contamination.^{14,15}

In control experiments, film depositions using the $\text{Si}(\text{NMe}_2)_n\text{H}_{4-n}$ compounds without ammonia were carried out at 750 °C.¹⁶ For all three precursors, films were obtained but at slower growth rates and with large amounts of carbon (22-30%) and oxygen (15-17%) contamination (Table I). The high oxygen content in these films is probably due to the extended time the precursors and films were exposed to oxygen-containing impurities in the carrier gas at 750 °C, which is a reflection of the slow growth rates.

In conclusion, we have shown $\text{Si}(\text{NMe}_2)_n\text{H}_{4-n}$ ($n = 2-4$) compounds and ammonia are promising precursors to silicon nitride coatings at 750 °C. Our preparation provides higher growth rates than the existing APCVD and LPCVD routes at comparable temperatures. Also, the $\text{Si}(\text{NMe}_2)_n\text{H}_{4-n}$ precursors appear to be safer to handle than SiH_4 and SiH_2Cl_2 , which is another advantage over existing systems.¹⁷

Acknowledgment. We are grateful to the National Science Foundation (DMS-8802306) for support of this work. We thank Renaud Fix for helpful discussions. XPS and RBS analyses were carried out at the Harvard Materials Research Laboratory, an NSF-funded facility (DMR-86-14003).

(14) Raider, S. I.; Flitsch, R.; Aboaf, J. A.; Pliskin, W. A. *J. Electrochem. Soc.* 1976, 123, 560.

(15) Brown, D. M.; Gray, P. V.; Heumann, F. K.; Philipp, H. R.; Taft, E. A. *J. Electrochem. Soc.* 1968, 115, 311.

(16) Sugiyama, K.; Pac, S.; Takahashi, Y.; Motojima, S. *J. Electrochem. Soc.* 1975, 122, 1545.

(17) Sharp, K. G.; Arvidson, A.; Elvey, T. C. *J. Electrochem. Soc.* 1982, 129, 2346.

Synthesis of the New Highest T_c Ambient-Pressure Organic Superconductor, κ -(BEDT-TTF)₂Cu[N(CN)₂]Br, by Five Different Routes

Hau H. Wang,* Aravinda M. Kini,*
Lawrence K. Montgomery, Urs Geiser,
K. Douglas Carlson, Jack M. Williams,*
James E. Thompson, Diana M. Watkins,
W. K. Kwok, U. Welp, and K. G. Vandervoort

Chemistry and Materials Science Divisions
Argonne National Laboratory, Argonne, Illinois 60439

Received June 29, 1990

The synthesis of new superconducting compounds is a topic of intense interest today. Very recently the superconducting transition temperature (T_c) of a new BEDT-TTF-based superconductor [BEDT-TTF or "ET" is bis-

(ethylenedithio)tetrathiafulvalene, $\text{C}_{10}\text{H}_8\text{S}_8$], κ -(ET)₂Cu[N(CN)₂]Br, was raised to a new high for these systems (resistive onset $T_c = 12.5$ K, midpoint 11.2 K).^{1,2} The previous highest T_c was observed in κ -(ET)₂Cu(NCS)₂ (resistive midpoint 10.4 K).³ Since the introduction of polymeric anions into the synthesis of ET-based materials^{4,5} and the development of useful structure-property correlations for β -phase ET superconductors,⁶ numerous new superconducting materials have been prepared, including recently, e.g., α -(ET)₂(NH₄)Hg(SCN)₄ ($T_c = 1.15$ K)⁷ and β_m -(BEDT-TTF)₃Cu₂(NCS)₃ ($T_c = 1.06$ K),⁸ but κ -(ET)₂Cu(NCS)₂ and κ -(ET)₂Cu[N(CN)₂]Br represent the only organic superconductors to break the 10 K barrier. In contrast to the synthesis of κ -(ET)₂Cu(NCS)₂, which is usually carried out by use of electrocrystallization of ET in the presence of CuSCN and SCN⁻ anion, the synthesis of κ -(ET)₂Cu[N(CN)₂]Br can be achieved by use of different starting materials, and thus provides an opportunity to probe the complex solution chemistry involved during electrocrystallization. In this communication we report five synthetic routes, and the related solution chemistry, for the electrocrystallization of κ -(ET)₂Cu[N(CN)₂]Br. One of these syntheses, which is the easiest to use (entry 3, Table I), utilizes all commercially available materials.

The new organic superconductor κ -(ET)₂Cu[N(CN)₂]Br belongs to the orthorhombic space group $Pnma$, $Z = 4$, $a = 12.942$ (3) Å, $b = 30.016$ (4) Å, $c = 8.539$ (3) Å, $V = 3317$ (1) Å³ (298 K).¹ The donor molecular packing motif is typical of κ -phase salts. The polymeric anion Cu(N(CN)₂)Br⁻, consists of tricoordinated Cu(I) with two bridging (NC)₂N(CN)⁻ ligands forming a zigzag chain and a terminal bromide to complete the coordination around the Cu atom.¹ On the basis of the anion stoichiometry, the polymeric chain can be synthesized, in principle, from CuBr with N(CN)₂⁻ or from CuN(CN)₂ with Br⁻. We have explored these possibilities, and the results are summarized in Scheme I.

The CuBr/N(CN)₂⁻ system leads to at least three different anionic species depending on the reaction conditions. We have found that the reaction of CuBr with 2 equiv of dicyanamide anions (as the PPh₄⁺ salt)⁹ in re-

(1) Kini, A. M.; Geiser, U.; Wang, H. H.; Carlson, K. D.; Williams, J. M.; Kwok, W. K.; Vandervoort, K. G.; Thompson, J. E.; Stupka, D. L.; Jung, D.; Whangbo, M.-H. *Inorg. Chem.* 1990, 29, 2555.

(2) Williams, J. M.; Kini, A. M.; Geiser, U.; Wang, H. H.; Carlson, K. D.; Kwok, W. K.; Vandervoort, K. G.; Thompson, J. E.; Stupka, D. L.; Jung, D.; Whangbo, M.-H. In *Proc. Intl. Conf. Organic Superconductors*; South Lake Tahoe, CA, May 1990. Kresin, V., Little, W., Eds. *Organic Superconductivity*; Plenum Press: New York 1990; pp 33-44.

(3) (a) Urayama, H.; Yamochi, H.; Saito, G.; Nozawa, K.; Sugano, T.; Kinoshita, M.; Sato, S.; Oshima, K.; Kawamoto, A.; Tanaka, J. *Chem. Lett.* 1988, 55. (b) Gärtner, S.; Gogu, E.; Heinen, I.; Keller, H. J.; Klutz, T.; Schweitzer, D. *Solid State Commun.* 1989, 65, 1531. (c) Carlson, K. D.; Geiser, U.; Kini, A. M.; Wang, H. H.; Montgomery, L. K.; Kwok, W. K.; Beno, M. A.; Williams, J. M.; Cariss, C.; Crabtree, G. W.; Whangbo, M.-H.; Evain, M. *Inorg. Chem.* 1988, 27, 965, 2904.

(4) Geiser, U.; Wang, H. H.; Gerdon, L. E.; Firestone, M. A.; Sowa, L. M.; Williams, J. M.; Whangbo, M.-H. *J. Am. Chem. Soc.* 1985, 107, 8305.

(5) Geiser, U.; Wang, H. H.; Donega, K. M.; Anderson, B. A.; Williams, J. M.; Kwak, J. F. *Inorg. Chem.* 1986, 25, 401.

(6) (a) Williams, J. M.; Schultz, A. J.; Wang, H. H.; Carlson, K. D.; Beno, M. A.; Emge, T. J.; Geiser, U.; Hawley, M. E.; Gray, K. E.; Venturini, E. L.; Kwak, J. F.; Azevedo, L. J.; Schirber, J. E.; Whangbo, M.-H. In *Proceedings of the Yamada Conference XV on Physics and Chemistry of Quasi One-Dimensional Conductors*; Lake Kawaguchi, Yamanashi, Japan, May 26-30, 1986. Tanaka, S., Uchinokura, K., Eds. *Physica B* 1986, 143, 346. (b) Williams, J. M.; Wang, H. H.; Emge, T. J.; Geiser, U.; Beno, M. A.; Carlson, K. D.; Thorn, R.; Schultz, A. J.; Whangbo, M.-H. *Prog. Inorg. Chem.* 1987, 35, 51.

(7) Wang, H. H.; Carlson, K. D.; Geiser, U.; Kwok, W. K.; Vashon, M. D.; Thompson, J. E.; Larsen, N. F.; McCabe, G. D.; Hulscher, R. S.; Williams, J. M. *Physica C* 1990, 166, 57.

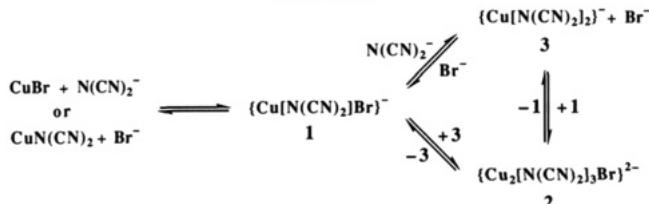

(8) Beno, M. A.; Wang, H. H.; Kini, A. M.; Carlson, K. D.; Geiser, U.; Kwok, W. K.; Thompson, J. E.; Williams, J. M.; Ren, J.; Whangbo, M.-H. *Inorg. Chem.* 1990, 29, 1599.

Table I. Electrocrysallization of κ -(ET)₂Cu[N(CN)₂]Br by Multiple Routes

electrolyte	solvent	current density, $\mu\text{A}/\text{cm}^2$	crystal morphology	room temp ESR line width, G	T_c , K
(PPh ₄) ₂ Cu ₂ [N(CN) ₂] ₃ Br ^a	TCE/ + 10% EtOH	0.2 (35 days) 0.1 (41 days)	thin plates thick plates, blocks thick plates	63, 70 60-80	onset 11.6 saturation ~9 ^a
CuBr, PPh ₄ [N(CN) ₂] ^b	TCE + 10% EtOH	0.1 (10 days)	thick plates	60-80	onset 11.6 saturation ~9
CuBr, Na[N(CN) ₂], 18-crown-6 ^c	TCE + 10% EtOH	0.2 (15 days)	thin plates	68	onset 11.4 saturation ~8
Cu[N(CN) ₂] ^d , N(n-Bu) ₄ Br	TCE + 10% EtOH	0.15 (8 days)	thick plates	72	onset 11.6 saturation ~9
(PPh ₄)Cu[N(CN) ₂] ₂ , ^e N(n-Bu) ₄ Br	TCE + 10% EtOH	0.1 (26 days)	thick plates	66, 71	onset 11.6 saturation ~9

^a Reference 1. ^b Reference 9. ^c Reference 12. ^d Reference 13. ^e Reference 10. ^f 1,1,2-Trichloroethane. ^g Measured on crystals grown at 0.1 $\mu\text{A}/\text{cm}^2$.

Scheme I

fluxing acetonitrile leads to two different isolated crystalline products depending on the reaction time. After 30 min of reflux and subsequent cooling, anion **2** is isolated as the tetraphenylphosphonium salt, (PPh₄)₂Cu₂[N(CN)₂]₃Br.¹ However, by use of the same reaction conditions and after 16 h of reflux and cooling, compound **3**, (PPh₄)Cu[N(CN)₂]₂, is isolated.¹⁰ It should be pointed out that the anions **2** and **3** are likely to be polymeric as suggested by their limited solubilities in organic solvents. After the discovery^{1,2} of the title superconductor by use of compound **2** as the supporting electrolyte during electrocrysallization, we attempted the synthesis of the polymeric anion, **1**, from several different starting materials. A list of five different electrolyte systems used for the electrocrysallization of κ -(ET)₂Cu[N(CN)₂]Br is tabulated in Table I.

A typical procedure for the electrocrysallization synthesis¹¹ of κ -(ET)₂Cu[N(CN)₂]Br with 1 equiv of ET (Strem Chemical Co.) and 10 equiv of supporting electrolyte components (e.g., CuBr, Na[N(CN)₂], 18-crown-6, 10 equiv each)¹² in 1,1,2-trichloroethane (TCE) or TCE and 10% (vol) absolute ethanol as the solvent at a current density of 0.1–0.2 $\mu\text{A}/\text{cm}^2$. The H cells are usually assembled inside a drybox to avoid CuBr oxidation, and the crystal growth is carried out at room temperature for 2–5 weeks. As shown in Table I, the supporting electrolyte for the first entry is a “preformed” Cu₂[N(CN)₂]₃Br²⁻ anion, **2**.¹ The molecular structure of this anion is not presently known, but significant dissociative rearrangement is expected in solution in order to form the Cu[N(CN)₂]Br⁻ polymeric anion, **1**. Entries 2–4 are *in situ* preparations starting from either CuBr and the N(CN)₂⁻ anion or CuN(CN)₂¹³ and the Br⁻ anion. The third entry is based on all commercially available starting materials. The crystal growth for entries 2–4 in Table I is quite facile, and tiny crystals begin to grow within 3–4 h. The fifth entry

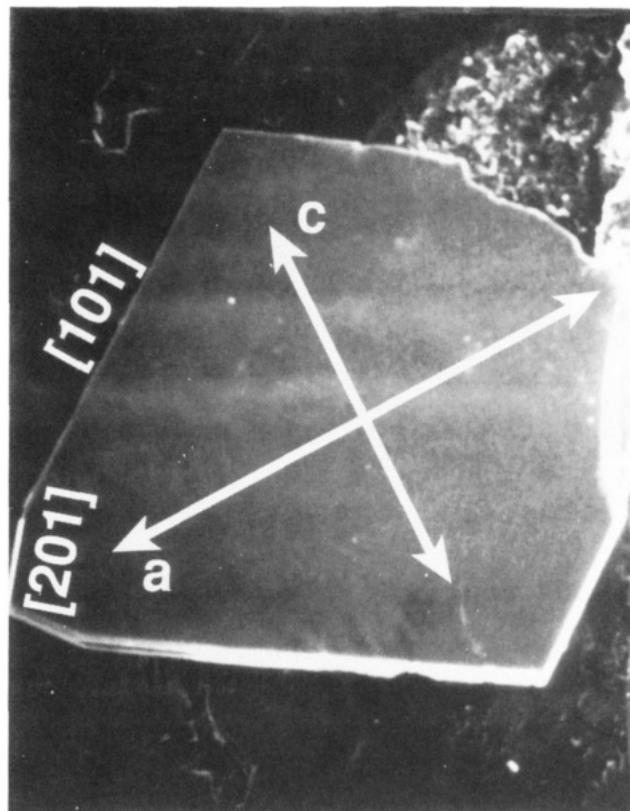


Figure 1. Scanning electron micrograph of a typical κ -(ET)₂Cu[N(CN)₂]Br crystal, viewed along the *b* axis. The *a* and *c* crystal axes as well as the Miller indices of the boundary faces are indicated.

is based on Cu[N(CN)₂]⁻, **3**, and Br⁻. The formation of the polymeric anion, Cu[N(CN)₂]Br⁻, in the crystals is consistent with the displacement of one dicyanamide ligand by Br⁻ under equilibrium conditions. The most typical morphology for κ -(ET)₂Cu[N(CN)₂]Br is that of a rhombus-shaped plate, and the crystal dimensions are approximately 1 \times 1 \times 0.3 mm³ for thick plates and 1 \times 1 \times 0.1 mm³ for thin plates. A scanning electron micrograph for a thin platelet crystal prepared from entry 3 is shown in Figure 1 at 100 \times magnification.

The long diagonal of the rhombus-shaped platelet is the crystallographic *a* axis, which bisects the 105.7° angle formed by the [201] faces. The pointed angle (66.8°) formed by the two [101] faces, rounded out by the two [201] faces, is a characteristic feature of κ -(ET)₂Cu[N(CN)₂]Br crystals. The *c* axis is perpendicular to the *a* axis and follows the short diagonal of the platelet. The *b* axis is the normal to the crystal plane. As shown in Table I, a lower current density (e.g., 0.1 $\mu\text{A}/\text{cm}^2$) favors slow crystal growth, and the resulting crystal morphology usually is a thick plate. On the other hand, a slightly higher current density (e.g., 0.2 $\mu\text{A}/\text{cm}^2$) favors rapid crystal

(9) Köhler, H.; Lischko, T. P.; Hartung, H.; Golub, A. M. *Z. Anorg. Allg. Chem.* 1974, 403, 35.

(10) Mp 160–161 °C. Anal. Found (Calcd) for (PPh₄)₂Cu₂[N(CN)₂]₃: C, 62.55 (62.85); H, 3.77 (3.77); N, 15.50 (15.71); P, 5.98 (5.79).

(11) Stephens, D. A.; Rehan, A. E.; Compton, S. J.; Barkhau, R. A.; Williams, J. M. *Inorg. Synth.* 1986, 24, 135.

(12) CuBr, 99.99%; NaN(CN)₂, reagent; and 18-crown-6, Gold Label, purchased from Aldrich Chemical Co., Inc.

(13) CuN(CN)₂ was synthesized following the general procedure for the preparation of copper(I) halides (Keller, R. N.; Wycoff, H. D. *Inorg. Synth.* 1946, 2, 1). Anal. Found (Calcd) for: CuC₂N₃: C, 18.60 (18.54); N, 32.22 (32.43).

growth, and thin platelet crystals are formed. Under slow growth conditions, in a few cases the sample thickness is comparable to its width, and the crystal morphology appears to favor blocks (entry 1).

All the crystals listed in Table I have been surveyed by use of ESR spectroscopy at arbitrary orientations, and the peak-to-peak line widths all fall within the range 60–80 G, which is consistent with the reported values for κ -(ET)₂Cu[N(CN)₂]Br.^{1,14}

Listed in the last column of Table I are the T_c 's of different samples as determined from rf (radio frequency) penetration depth measurements.¹⁵ In this method, superconductivity is exhibited by an increase in resonant frequency over that of the empty coil caused by the exclusion of the rf field from the sample by the persistent shielding currents. Both the onset temperatures and the signal saturation temperatures are listed. All samples show similar onset temperatures (11.4–11.6 K), indicating that the crystals are of comparable high quality. Entries 1, 2, 4 and 5 all give narrow superconducting transition widths (2.6 K) while entry 3 shows a broader transition width (3.4 K). The slightly broader transition width indicates increased inhomogeneity in the samples.

In summary, all five synthetic routes give high-quality crystals of κ -(ET)₂Cu[N(CN)₂]Br. The in situ preparations are the most straightforward syntheses. On the basis of Scheme I, anionic species 1–3 are in equilibrium in solution. The anions 2 and 3 are isolated as PPh₄⁺ salts, while anion 1 is stabilized as an ET salt. The title superconductor can be reached by use of in situ preparations (entries 2–4) or from compounds 2 and 3. This study indicates that the crystal morphology can be modified from thin platelets to chunky blocks by varying the applied current density. A low current density favors slow crystal growth and thicker crystals elongated along the *b* axis. The anionic rearrangements, as seen in this study, have been postulated in the synthesis of nonsuperconducting (ET)₃Ag_{6.4}I₈ from either [K(18-crown-6)]₂Ag₄I₆ or [K(18-crown-6)]AgI₂.^{5,14} It is encouraging that five synthetic routes, from different starting materials, all lead to the same organic superconducting compound with the highest T_c reported to date.

Note Added in Proof.

We have discovered¹⁶ that κ -(ET)₂Cu[N(CN)₂]Cl, isostructural to the Br salt reported herein, can be prepared by the same routes. The Cl salt is superconducting (T_c = 12.8 K, 0.3 kbar)¹⁶ and superconductivity can be stabilized at "ambient pressure" by simply coating the crystals with G. E. varnish or Apiezon N grease prior to cooling.

Acknowledgment. Work at Argonne National Laboratory is sponsored by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences, under Contract W-31-109-ENG-38. We thank J. Gregar for the electrocrystallization cells, E. Huff for ICP analyses, and G. R. Bai and H. L. M. Chang for obtaining the scanning electron micrograph. L.K.M. is a Faculty Research Participant, sponsored by the Argonne Division of Educational Programs, from the Department

(14) Wang, H. H.; Beno, M. A.; Carlson, K. D.; Geiser, U.; Kini, A. M.; Montgomery, L. K.; Thompson, J. E.; Williams, J. M. In *Proc. Intl. Conf. Organic Superconductors*; South Lake Tahoe, CA, May 1990. Kresin, V., Little, W., Eds. *Organic Superconductivity*; Plenum Press: New York 1990; pp 45–61.

(15) Crabtree, G. W.; Carlson, K. D.; Hall, L. N.; Coppers, P. T.; Wang, H. H.; Emge, T. J.; Beno, M. A.; Williams, J. M. *Phys. Rev. B* 1984, 30, 2958.

(16) Williams, J. M.; Kini, A. M.; Wang, H. H.; Carlson, K. D.; Geiser, U.; Montgomery, L. K.; Pyrka, G. J.; Watkins, D. M.; Kimmers, J. M.; Boryschuk, S. J.; Strieby Crouch, A. V.; Kwok, W. K.; Schirber, J. E.; Overmyer, D. L.; Jung, D.; Whangbo, M.-H. *Inorg. Chem.* 1990, 29, 3272.

of Chemistry, Indiana University, Bloomington, IN. J.E.T. and D.M.W. are undergraduate student research participants also sponsored by the Argonne Division of Educational Programs, from the University of Michigan, Ann Arbor, MI, and Florida Institute of Technology, Melbourne, FL, respectively.

Registry No. 1, 128164-16-9; [κ -(ET)₂] 1, 127793-44-6; 3, 129215-60-7; (PPh₄)₃, 129215-62-9; ET, 66946-48-3; TCE, 79-00-5; CuBr, 7787-70-4; N(CN)₂⁻, 17997-40-9; CuN(CN)₂, 21962-69-6; Br⁻, 24959-67-9; EtOH, 64-17-5; (PPh₄)₂N(CN)₂, 51501-04-3; Na[N(CN)₂]⁻, 1934-75-4; N(*n*-Bu)₄Br, 1643-19-2; 18-crown-6, 17455-13-9.

Electrochromic Molybdenum Trioxide Thin Film Preparation and Characterization

Daniel Bélanger* and Guylaine Laperrière

*Département de Chimie
Université du Québec à Montréal
C.P. 8888, succursale A
Montréal, Québec, Canada H3C 3P8*

Received April 10, 1990

Molybdenum trioxide is a very interesting material because it has applications in catalysis,¹ in lithium batteries as cathode material,² and in electrochromic devices.^{3,4} Techniques that have been used to prepare molybdenum trioxide include chemical vapor deposition,⁵ vacuum evaporation,⁶ and sol-gel.⁷ Moreover, molybdenum trioxide has recently been prepared by electrodeposition from hexavalent molybdate solution (Li₆Mo₇O₂₄)⁸ and molybdenum–hydrogen peroxide solution.⁹

Our laboratory has recently been interested in molybdenum trisulfide thin films obtained by electrodeposition from an aqueous solution of ammonium tetrathiomolybdate.^{10,11} It is well-known that thermal oxidation of molybdenum trisulfide yields molybdenum trioxide.¹² With this in mind, we have decided to prepare molybdenum trioxide thin film coated tin oxide electrode from molybdenum sulfide thin film by thermal oxidation in air. This paper deals with the preparation of molybdenum trioxide thin films and their characterization by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and UV-visible spectroscopy.

The preparation of molybdenum trioxide thin films comprises two steps. In the first step, a molybdenum trisulfide thin film is electrodeposited at a potential of 0.6 V vs SCE on a conducting substrate such as tin oxide coated glass electrode from a 10 mM aqueous ammonium tetrathiomolybdate solution.^{10,11} The thickness of the molybdenum sulfide film can be varied by changing the deposition time. In the second step, the electrodeposited

* To whom correspondence should be addressed.

(1) Li, C. P.; Hercules, D. M. *J. Phys. Chem.* 1984, 88, 456.

(2) Kumagai, N.; Kumagai, N.; Tanno, K. *J. Appl. Electrochem.* 1988, 18, 857.

(3) Lampert, C. M. *Sol. Energy Mater.* 1984, 11, 1.

(4) Donnadieu, A. *Mater. Sci. Eng.* 1989, B3, 185.

(5) Abdellaoui, A.; Martin, L.; Donnadieu, A. *Phys. Status Solidi A* 1988, 109, 455.

(6) Anwar, M.; Hogarth, C. A. *Phys. Status Solidi A* 1988, 109, 469.

(7) Harb, F.; Gérard, B.; Nowogrocki, G.; Figlarz, M. *C. R. Acad. Sci. (Paris), Sér. II* 1986, 303, 349.

(8) Baba, N.; Morisaki, S.; Nishiyama, N. *Jpn. J. Appl. Phys.* 1984, 23, L638.

(9) Guerfi, A.; Dao, L. H. *J. Electrochem. Soc.* 1989, 136, 2435.

(10) Bhattacharya, R. N.; Lee, C. Y.; Pollak, F. H.; Schleich, D. M. *J. Non-Cryst. Solids* 1987, 91, 235.

(11) Laperrière, G.; Marsan, B.; Bélanger, D. *Synth. Met.* 1989, 29, 201.